
NtMME-SORAL EFFECTS

CED COMPOSITESO

44 I

La. RIA'1AUnjAL NOTPE

* A
1  NAE-AN-10

to-v 
NUC NO. 22700

MIA4

S83 12 13 285



NATIONAL AERONAUTICAL ESTABLISHMENT

SCIENTIFIC AND TECHNICAL PUBLICXTIONS

AERONAUTICAL REPORTS:

Aeronautical Reports (LR): Scientific and technical information pertaining to aeronautics considered
important, complete, and a lasting contribution to existing knowledge.

Mechanical Engineering Reports (MS): Scientific and technical information pertaining to investigations
outside aeronautics considered important, complete, and a lasting contribution to existing knowledge.

AERONAUTICAL NOTES (AN): Information less broad in scope but nevertheless of importance as a
contribution to existing knowledge.

LABORATORY TECHNICAL REPORTS (LTR): Information receiving limited distribution because
of preliminary data, security classification, proprietary, or other reasons.

Details on the availability of these publications may be obtained from:

Publications Section,
National Research Council Canada,
National Aeronautical Establishment,I Bldg. M-16, Room 204,
Montreal Road,
Ottawa, Ontario
K1A 0R6

ETABLISSEMENT AERONAUTIQUE NATIONAL

PUBLICATIONS SCIENTIFIQUES ET TECHNIQUES

RAPPORTS D'AERONAUTIQUE

Rapports d'a6ronautique (LR): Informations scientifiques et techniques touchant l'adronautique
jugees importantes, compl~tes et durables en termes de contribution aux connaissances actuelles.

Rapports de g6nie m6canique (MS). Informations scientifiques et techniques sur la recherche extcrne
i l'a~ronautique jug~es importantes, compl~tes et durables en termes de contribution aux connais-
sances actuelles.

CAHIERS D'AERONAUTIQUE (AN): Informations de moindre portde mais importantes en termes
d'accroissement des connaissances.

RAPPORTS TECHNIQUES DE LABORATOIRE (LTR): Informations peu dis6nmines pour des
raisons d''sage secret, de druit de proprit ou autres ou parce qu'elles constituent des donnees
pr6liminaires.

Les publications ci-dessus peuvent 6tre obtenues i l'adresse suivante:

Section 'es publications
Conseii national de recherches Canada
Etablissement adronautique national
Im. M-16, piece 204
Chemin de Montrdal
Ottawa (Ontonro)
KIA 0R6



- - - ----------- ~-~-----

UNLIMITED

UNCLASSIFIE D

HYGROTHFRMAL EFFECT'S IN CONTINUOUS FIBRE
REINFORC ED COMPOSITES

PART 11: PHYSICAL PROPERTIES

EFFETS HYGROTHERMIQUES DANS LES COMPOSITES
AKENFORT DE FIBRE CONTINU

PARTIE II: PROPRIfTtS PHYSIQUES

Accession Fop,
NTISGA&

DTIC TAB
UnannoUncod

Justifjcatio
by/par

ByJ.P. Komorowski Distribution/
AvaiJlabilitV Cde

National Aeronautical Establishment .7 Cdes
Dist jSpecial

AERONAUTICAL NOTE
OTITAWA NAE-AN-10
' EPTEMBER 1983 NRC NO. 21700

4

W. Wallace, Head/Chef
Shnucum and Matajak Laboratoxy' G.M. Lindberg 4

Leboratoire des xtructuru et matwimuz Director/Directeur

0"'. T

-'i A r-21



SUMMARY

>This report is second in a series of literature reviews in which
hygrothermal effects on aerospace composite materials (CM) with polymeric
matrixes arp examined. This report (Part II) deals primarily with the glass
transition temperature and expansion properties due to temperature and
moisture. The chapter on residual stresses is alEo included in this part as
these stresses are a direct consequence of the expansion properties. Specific
heat, thermal conductivity and emittance are briefly mentioned in Chapter
3.0, while properties connected with moisture absorption have been reviewed
extensively in Part I of the series.",--

Other reports in this series deal with the following topics:

Part I: Thermal and Moisture Diffusion
Part III: Mechanicp.l Properties 1
Part IV: Mechanical Properties 2
Part V: Composite Structures arid Joints
Part VI: Numerical and Analytical Solutions
Part VII: Summary of Conclusions and Recommendations

A complete list of references is included in the Appendix and the
numbers in the brackets appearing in the text refer t o this list.

RESUME

Le prisent rapport est le deuxi~rie d'une s~rie de d~pouillements
bibliographiques concernant l'influence des effets hygrothermiques sur les
mat6riaux composites utiis6s en a~rospatiale. Cette Partie II porte principa-
lement sur la temperature de transformation vitreuse et la dilatation sous
l'effet de la chaleur et de l'humidit6. Le chapitre sur lea constraintes r6sidu-
aires figure dans cette partie puisqu'elles r~sultent directement de la dilatation.
La chaleur sp~cifique, la conductibilit6 thermique et le pouvoir 6missif sont
trait~s bri~vement au chapitre 3.0, tandis; que les propri~t~s d~coulant de
l'absorption d'humidit6 avaient fait l'objet d'un examen d~taill6 dans la
Partie I de la s~rie.

Les autres rapports de la s~rie portent sur les su.- ts suivants:

Partie 1: Diffusion de la chaleur et de l'humidit6
Partie III: Propri6t~s m~caniques 1
Partie IV: Propri~t~s m~caniques 2
Partie V: Structures et joints composites
Partie VI: Solution num~riquee et analytiques
Partie VII: R6suxn6 des conclusions et recommandations

Une liate complite des r~f~rences est incluse en annexe et les
nombres entre parenthises dans he texte se rapportent i cette liste.
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HYGROTItERMAL EFFECTS IN CONTINUIOUS FIBRE REINFORCEI COMPOSITES

PART 11: PHYSICAL PROPERTIES

1.0 INTRODUCTION

The second part of the series of literature review* is concentrated on three properties: the
glass transition temperature and expansions due to temperature and moisture. The properties connected
with moisture absorption were dealt with extensively in Part I of the review.

Specific heat, thermal conductivity and enittance have not received very much attention
from researchers in composites and therefore r only mentioned briefly.

Other properties may be affected by the absorption of moisture or heat but are considered
of secondary importance or trivial (i.e. effect on specific weight) and are not therefore addressed in
detail.

Material properties responsible for ultrasonic wave propagation were found to be affected h
by moisture and hygrothermal degradation. Those interested in Non Destructive Testing (NDT) of
composites are referred to Kaelble and Dynesl 1 t 3 . 15 5.9 5., 1 -2 I, Ishai and Bar-Cohent l .9 ' 13 9 1 and
Krizl 1 80 I.

The changes in electrical properties may also be useful for NDT purposes as was shown by
Cotinaud et all 6 8 I, Dewimillel8 7 I (see Part I of review) and Kadotanil I 51 I.

The Appendix is a revised version of the bibliography for the whole series of reviews on
Hygrothermal Effects on aerospace composites.

2.0 GLASS TRANSITION TEMPERATURE

At room temperature most polymer matrix materials are in a glassy state. On increasing the
temperature, the elastic moduli and viscosity decrease slowly until a point Is reached at which both
these quantities drop drastically within a temperature range of 20 to 5C. Discontinuity in the change
of properties does not take place, however, the rates of change of various physical properties versus
temperature undergo large increases. Similar effects were observed for crystals and denoted as second
order tranitions. However, in polymers the derivative properties do not appear to be discontinuous a3
in the case of crystals and to stress this difference, the use of the term glass transition temperature
(Tg) is preferable to second order transition temperaturel 2 5 I.

[he transition from a glassy to rubbery state is observed as a drastic drop in the mechanical
properties of the matrix materials and is a natural upper temperature limit for structural applications
of these materials. Glass transition temperature (Tg) is therefore one of the important composite
material properties.

2.1 Methods of Measurements

Glass transition is manifested when a rapid rate of change of various physical and mechanical
properties is observed with a slight increase in temperature. As a consequence, many methods have
been used to measure the Tg. The mehods can be either static or dynamic.

* Only polymer matrix continuous fibre reinforced composites are considered (see Introduction to Part I).

... ... .... ..... .. .. . .., _ , ....
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Torsional braid analysis (TBA) is a commonly used dynamic method (Fig. 1) (ASTM2236.81).
The frequency and the rate of decay of free vibrations of a pendulum are monitored with changing
temperature. Transition temperature is recorded as a signific&t change in complex elastic shear modu-
lus or more precisely as a maximum in the logarithmic decrement.

Static methods are more popular and generally easier. They include dilatometry, columnar
loading (or linear thermal expansion method), differential thermal analysis and other methods. In
dilatometry, the coefficient of cubical thermal expansion is monitored. A rather abrupt change in the
value of the coefficient over a narrow temperature interval indicates the glam transition temperature.

The Tg values vary from test method to test method as the concept of second order transi-
tion is not precise. For this reason other tests were designed (i.e. Heat Distortion Temperature tests
(HDT), Vicat softening temperature using a penetration probe) and are used to establish temperature
envelope of polymers and for qualitative comparisons. What separates them from methods used for Tg
measurement is that they do not measure any fundamental physical property. Data obtained from
thos tests is especially vaeful in applications where the factors of time, temperature, method of
loading, and fiber stress are similar to those specified in that test IASTM D648-72(78)I.

Very popular tests, the heat distortion temperature (HDT) tests can have several forms
see ASTM D648-72(78) and ASTM D1637-61(76)). The HDT test, usually it, the form of three

point flexural displacement under constant loading, is an empirical method and does not measure any
fundamental property. The temperature designated as HDT is arbitrarily chosen and therefore should
not be referred to as glas transition temperature but imply as HDT. HDT tests may be useful in
qualitative comparison of materials.

Tajimal 28 3 1 compared results obtained using two different test methods. Materials tested
were 5209 epoxy and T300/5209 composites. For dry resin, the HDT was 1390C while Tg from dila-
tometry was 1540 C. Sykes et all 281 1 used TBA (Fig. 1) and HDT (Fig. 2) for the same T300/5209
composite. The difference between Tg from TBA and HDT was very pronounced for wet composites
(Fig. 3).

Carter et all S 2I suggested a practical method of defining a Tg value from a heat distortion
experiment (flexural). Their method is demonstrated in Figure 4 and bised on an equation deri'ved
from a viscoelastic model of cross-linked polymer. The curves shown represent probe displacement
(8) vs temperature (T). The point of maximum curvature (T,, 8c) is found by visual inspection or
numerical analysis. The intersection between a line parellel to temperature axis at the distance of
3.60 6C and a tangent to the curve at (Tc, 6, ) gives Tg. This Tg value was in good agreement with
results obtained from loaded columnar expansion (where a change in the first derivative of expansion
curve is used as Tg). Carter et al designate the temperature of which this second order transition
takes place as T2 rather than Tg.

It should be mentioned here that the loads used in measuring the Tg or HDT usually have to
be optimized for each material to increase sensitivity. The results of HDT or Tg measurement tests
are generally repeatable to better than 20 C. Reproductivity is somewhat lower, but for worst condi-
tions, should not exceed 10 0C (ASTM D1637-61(76), D3418-82, D2236-81).

2.2 Glass Trensition Temperature in Composites and Neat Resins

Browning et all 4 1 I measured HDT of neat 3501-5 resin and AS/3501-5 composite. They
do nut make a distnition between HDT and Tg and refer to the measured softening point in deflec-
tion of their sample as Tg. The value ef HDT for the dry resin was 1770 C as opposed to 1890 C for
the composite. However, Tajima and Wanamakerl 2 8 3 1 worked with 5209 resin and T300/5209
composite. For these materials, the result of HDT and Tg (dilatometry) tests were opposite to
Browning's. Both the HDT and Tr -, neat resin was higher then those for the composite in the dry
Atate. These seemed to indicate that ;he effective cross-link density in the matrix is less than that in
the neat resin. In the wet state the situation was reversed and the Tg and HDT values of wet compo-
site were higher than those of wet resin (see Table 1).

I



.3-

2.3 Effect of Moisture on Glas Transition Temperature

The effect of moisture on Tg and HDT of epoxies and their composites has been studied
extensivelyl 1  , ,41 42 .111. 24, 2 2 0 1 . Typical resultsa a shown in Figure 6. Even a small
moisture content will lower the Tg of these materials considerably. Carter and Kiblerl - I 1i easured the
effect of moisture on glass transition temperate for F178 polyimide resin. From Fiure 6, it can be
seen that the effect is similar to that observed in epoxies.

The lowering of Tg and HDT by moisture is ob-erved regardless of the method uf inesure-
ment. However, as McKaguel 21 41 pointed out, the column loading method is better suited for wet
Tg measurement as the extension of the specimens core is measured. The surface is dried during the
experiment and shrinks which must have an effect on bending tests.

Browning et all 41 4 2) used Equation (1) suggested by Kelley and Buechel I ( I to predict !
Tg of wet resin. 4

, Vp, Tgp + od k -Vp) T&Tg(1)
TgVP+ p (1- Vp)

where: a - expansion coefficient

V - volume fraction

sufp - denotes polymer
suf, - denotes diluent

This equation is based on free volume theory. Browning used a - 1 o - a where c, and aV are the linear L
expansion coefficients above and below Tg respectively. Browning et alhad to assume the Tg of water
as 40C. Their results correlated well with measurements of Tg (or rather HOT) for 3501-5 resin
(Fig. 7).

Delasi and Whitesidel I I modified Equation (1) by using specific volume of water values
calculated from swe'ling measurements. This .nodification gave good correlation, especially for neat
resins.

McKaguel 1 1 1 14j observed that measured Tg temperatures from loaded column measure-
ments are lower than those oredicted by Equation (1). He pointed out that good correlation was
obtained only for bending tests where drying of specimen surface affects the results. His modified
equation introduces up as a volumetric expansion coefficient of a polymer in the glassy state. Swelling
is also accoumted for in his modified equation. The two models are compared in Figure 8.

Morgan and Monesl2 2 01 simplified Kelley and Bueche's equation. Since the expansion coeffi-
cient ad 'amorphous water', was not known, it was assumed to be equal to ap. The Tg of water was
taken between 1370K and 1820K and the results compared with experimentally determined Tg for
TGDDM-DDS epoxy-moisture system (see Fig. 9). The large discrepancy in results was attributed to
the fact that in free volume theory, the hydrogen bonding interactions of active sites within epoxy
are not accounted for. Morgan and Mones suggested that the Kelley-Bueche equation should not be
used for predicting wet Tg in epoxies.

Carter and Kibler s I I proposed an entropy model for predicting glass transition tempera-
tures in wet resins and composites. This model designates configurational entropy, rather then free
volume, as the temperature dependent function that determines this transition. Arbitrary assigr '.-ents
for Tg and a of water are avoided and hydrogen bonding is accounted for. After some simplify&1 ,g
assumptions, the following Equation (W' is obtained:

Tgf - Tgo 1 - (R/M ACp) y(r)j (2)

I.*..r
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where:

y(r) r rn 1 + (I-r) R

r

r (MI/MW)f

Tg(*K)  - glass transition temperature of material containing f grams of water per
gram of dry resin

Tg.( 0K) - Tg of dry resin

M,(g/mole) - effective formula weight of hydrogen bond site

ACr (cal/gJC) - jump in specific heat due to glass transition in dry resin

R - universal gas constant

M -- 18 g/mole - formula weight of water

Carter and Kibler encountered difficulties in measuring ACp so a final comparison of the two models
was not possible at the time. For some materials, when parameters in Equation (1) are well chosen,
equally good correlation with experimental values may be obtained with both models. However, as
shown in Figure 6, for some resins Equation (2) gives much better correlation. The full potential of
this model will be realized when problems with ACp measurement are overcome.

When studying the relationships of Tg, peak thermal spike and moisture, McKaguel 2 I 1I
pointed out the importance of moisture distribution. In Figure 10, the two different moisture distri-
butions shown result in the same allover moisture content. However, wet Tg may be locally exceeded
leading to accelerated moisture absorption and deterioration of material (see Part I and Part III of the
review).

2.4 Conclusions

1) HDT is often referred to as Tg. This should be avoided as the two temperatures may be
substantially different.

2) Moisture significantly lowers theTg and HDT of matrixresinsl 4 1,4 2 . 5 1 , 2' 1,214,220,281 1.

3) HDT assessments of wet materials should not be based on flexural type tests 2 14 I.

4) The loaded column expansion method seems to be Im tter suited for wet Tg measurement, 2 14 I.

5) A study comparing tests in which a fundamental property is being measured and from which
Tg may be determined would be useful. At present it is difficult to relate results obtained
in various laboratories using various methods.

6) Of all the models used for predicting wet Tg of composites reviewed here, the entropy
model seems most promising. However, problems with some measure.ments, ie. ACp ill
have to be overcome before it becomes practicall 5 I 1.

3.0 THERMAL PROPERTIES - COEFFICIENT OF THERMAL EXPANSION

When considering thermal effects in solids, specific heat, thermal conductivity, emittance
and coefficient of thermal expansion (CTE) are the most often used properties Recently, the first
three mentioned properties have not received much attention from researchers in composite materials.

_ _ -
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The methods of measuring of these properties are fairly well established and the ASTM standards
are good references in this case. However, finding published values of these properties for specific
composites is not usually easy. For graphite/polyimide, notably, Campbell and Burleighl 49 I con-
ducted an extensive study of these properties and some results are shown in Figures 11, 12 and 13.
Christensen presented methods of predicting values of these properties for composite materials'
('Ihaptt IX 1.

The fourth of the above mentioned properties, namely the CTE, has been extensively
measured by various researchers and some of their results will be discussed below. Matrix materials
generally have very diffeNnt CTE from the fibers. As the composites are cured at elevated temperature,
there is on cooling to the normal usage temperature, a complex stress state created due to this CTE
mismatch, These residual stresses may cause loss of dimensional stability or even failure of the inter-
face or matrix material. Another reason for the interest in the CTE of composites, is that due to the
negative CTE of the graphite fibers and the positive CTE of the resin matrices, laminates with practi-
cally zero CTE, within wide range of temperatures, may be made (e.g. graphite/epoxy antennae,
telescopes). Hertzi I 10 1 in Figure 14 gave good illustration of the advantage of composites for applica-
tions where stiffness, dimensional stability and weight are of primary concern.

Rogers, Yawes et al published a series of articles on the linear thermal expansion of com-
positesl2 4 3 , 3 24, '5. 3 2, 3 ' 7,.2 4 . 1. An interferometric (Fizeau) method was used to measure the
changes of CTE within a temperature range of 90 0 K to 400"K (500 0 K). A large amount of data was
produced using different graphite fib-rs, orientations, fiber volume fractions, resin types and lay-ups.
The effects of matrix curing characteristics and fiber weave types on CTE were also investigated.
Materials used in these studies included HTS and HMS graphite fibers, ERLA 4617/m PEA, DLS 351/
BF 3 400 and code 69 (Fathergill & Harvey Ltd) epoxy resins. CTE of neat resins, unidirectional and
multidirectional lay-ups were measured.

The results provide useful data which can be immediately applied. When these data were
compared with current predicting methods, generally good correlation were achieved. However, a
major drawback to the application of these theories, is the lack of precise data on the CTE of fibers as
well as their transverse elastic properties. When appropriate values are assigned to these thermoelastic
constants, current techniques account well for fiber volumes (vf) in the range of 0.5 to 0.8 at room
temperature. Measurements have shown that the higher the fiber content vf - the hi is the tem-
perature at which resin softening effects on CTE are observed. Accuracy of predictive methods for
CTE of composites was improved when detailed data on the temperature dependence of CTE of the
neat resin had beer used.

Experience gained from the response of simple lay-uips to temperature change has enabled
the behavior of progressively more complex structures to be predicted with some degree of confidence
according to Yates et all.1 26 I.

Recently, Parker et all 2 2 91 have expanded data on the CTE of graphite/epoxies by testing
Fibredux 914C resin both neat and reinforced with HTS fibers. The scatter for this system was higher
than for those previously tested by Rogers, Yates eta al. The averaged results are, however, fairly
representative for the graphite/epoxy systems. Some of these data are shown in Figures 15, 16 and
Table 2.

Wang et all 3031 conducted a study of CT of Modior II graphite in an epoxy resin (unspe-
cified). They used static and creep tests to obtain data on the mechanical properties of fibers and
epoxy separately. This data was later used to calculate CTE of laminae and the results were compared
with experimental data (Fig. 17). Wang et al also made comparison between direct measurement and
co-ordinate transformation (Fig. 18). For a bidirectional laminate, a comparison was made between
direct measurement and lamination theory (Fig. 19). All theories used were linear elastic and generally
good correlation was obtained except for high temperatures where viscoelastic properties becomv more
pronounced. The results agree well with conclusions reached by Rogers, Yates et al. Parker et all 2 2 9 I
also compared theory with experiment for multidirectionaj laminates (Fig. 20). According to Parker,
the poor correlation for 0/t450 laminates was caused by the presence of moisture in the specimens.
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Cairns and Adamsl 4 S I measured the the.nal expansion for 3501-6 resin and its unidirec-
tional composites made with AS graphite and S2 glass fibers. The data were compared with results
,btpined from a micromechanical analysis based on 'Inite element methods. The correlation was poor.
This was, according to Cains and Adams, mainly casu_:- by ti c," -  -' er, (" , of fibers was
not known (a sensitivIty study of the model was unc.rt .ken, however, no synergitic effects were

considered).

Kabelkal 1501 formulated a model for predicting the CTE of fabric reinforced composites.
Comparison between the model and experimental results (Fig. 21) show poor correlation. Kabelka
concluded that this should improve when the viscoelastic response of matrix material is included. In
a previously mentioned study, Rogers et all 2421 found that for fabric reinforced graphite/epoxies:

- fiber tow densities piay a critical role in governing the average values of in plane CTE of
laminates,

- the crimp in reinforcing fibers is a significant factor in controlling the temperature at which
resin softening effects become apparent in the out of plane thermal expansion behavior,

- laminate stacking may change the thermal expansion by as much as 100%.

Camahort et all 4 6 1 thermally cycled near zero CTE laminates. A near zero CTE lay-up was
designed from results obtained on unidirectional specimens and was found to be [004, ±400, ±700 ],
Cycling was severe as samples were alternately immersed m liquid nitrogen and boiling water. Materials
and corresponding results can be seen in Table 3. The CTE was measured over a range of temperatures
from - 10C to 380C. An increase of CTE was found to be caused by microcracking of the resin - the
angle plies ceased to contribute and the laminate acted like a unidirectional one. The lower cure resin
system marked 339 (1210 C cure) performed better than the 1770 C cure systems, as did the hybrid
system where T300 plies made of woven graphite were added and these in effect acted as crack
stoppers.

CTE of graphite/polyimide systems used by Campbell and Burleight 4 8 i sh;wed scatter
during temperature changes. According to these authors, this was also caused by microcracking of the
r -sin.

Tennyson[ 2 8 6, 2 87 1 studied the effect of six months of temperature cycling from 240C to

930C in vacuum (10- 7 - 10-8 tort) on CTE. Over 30 cycles were applied during the whole test. Samples

used were four ply ±O symmetrically balanced laminates of graphite, boron or Kevlar in an epoxy
matrix. The results can be seen in Figures 22, 23 and 24. CTE predictions for laminates were calcu-
lated using unidirectional laminae properties in their respective environments. These are compared
with data in Figures 25 and 26. Very good correlation was achieved. From these results Tennyson
concluded that outgassing (mainly H2 0) and microcracking significantly affects CTE. Removal of
moisture seems to increase CTE of ± laminates (a similar observation was made by Parker(2 2 9 1).

For 3501 epoxy, moisture seemed to have just the opposite effect (Adamsonl 4 1). Dry
epoxy samples had CTE equal to 8.0 ± 0.5 X 10- 5 C I -while a sample saturated (7.3% wt gain) at
740C with moisture displayed CTE equal to 1.9 ± 0.5 X 10-4*0 - 1. (Adamson measured volumetric

expansion.) Adamson describec. i.s observations of thermal expansion and swelling of epoxies in terms
of free volume theory and post ldated an equilibrium state existing between bound and unbound water
in the resin. As free volume is inversely proportional to temperature, so is the volume of unbound
water in the epoxy. As only bound water causes swelling it is important that CTE measurements for
wet specimens allow for the time needed to reach equilibrium between bound and unbound water.
Adamson found that one hour was sufficient time for this equilibrium to be reached at 250C, however,
at 10C 24 hours were needed.

, i 4
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For applications where dimensional stability is of primery importance, two methods of
sealing the composites from moisture were suggested at General Dynamics (Hartz 1 301). Both the
bonded aluminium foil and tin-indium evitectic ovei a thin coat of copper praved to be effective
barriers up to 1500 hours of exposure. However, besides affecting the weighit of the composite
(- 0.13-0.21 g/in2 ) the coatings affected the CTE. For unsealed GY70 - X30 [(0/45/90/- 45)J]2
the CTE was -0.017 X 10-6 cC- 1 (-150 240C) and +0.021 X ]0-6 OC- 1 (240 + 74 0 C). When sealed
with 0.02 mm single layer aluminium, the CTE changed to +0.058 X 10- 6 'C- I and +0.089 X 10- 6 OC - I
respectively.

Useful data for CTE of composites at cryogenic temperatures can be found in References

[163 and 65).

4.0 MOISTURE EXPANSION OF COMPOSITES

The absorption of moisture into thp composite poses a problem of dimensional stability
very similar to the one caused by thermal expansion. Current polymer matrices absorb moisture and
expand (swell) as a result. Most fibers (glass, graphite, boron) do not seem to absorb moisture and
restrict the matrix expansion especially in the longitudinal direction of unidirectional lamina. An
internal stress state is thus created along with dimensional changes. Yet another stress state is created
when expansion of a lamina is restricted by adjacent plies in a multidirectional laminate. Since
moisture distribution through the thickaess of a composite is generally not uniform, this type of
internal stress may be present even in unidirectional laminate [Part I of the review].

By analogy to thermal effects, most theoretical prediction techniques developed for thermal
expansion are applicable. Work by Marom and Cohni 2 0 6 1 is a good example of the applicability using
analogies. Schapery's theory was used there te predict coefficients of swelling of single lamina parallel
and transverse to fibers (L andpJ.). Swelling of unidirectional laminae (E glass/Araldite F/HT 972
or ERL 2256 epoxy) was measured in plane every 150 from 00 to 90'. The results were compared
with two predictions, one based on Schapery's theory, and the othei based on measured ML and
I T. In Figure 27, comparison is made between the results. Schapery's equations should give better
correlation if wet properties of constituent materials (resin) are used.

Menges and Gitschnerl 216 I also used this analogy and applied Schneiders equations. The
relations obtained between swelling strains and fiber volume fraction were used to produce the graph
shown as Figure 28.

In moisture expansion of polymeric composites, the most important problem is the expan-
sion of the matrix material. Shirrel and Halpin[ 2 6 2 1, in their review paper, compared experimental
data from Hertz, Browning and McKague with the theory based on the assumption of additivity of
volumes:

VDRY LAMINATF + VH20 = Swollen volume

Within the restxictions that the moisture distribution is uniform and the resin material isotropic, the
dilatational strain is:

1 AV

3 V o

In Figure 29 the correlation seems to be good and differences with respect to expansion
due to moisture among various epoxies are small.

However, results from more recently published experiments do not lend themselves to
interpolation using assumptions based on additivity of volumes (see Figs. 30, 31 and 32). Hahn and
Kim 1 1 81 developed a nicromechanics model in which the expansion of the resin takes place afterIthe voids are filled with absorbed moisture. For each sample, there is a threshold value of moisture



concentration below which no expansion takes place. Arove the threshold the expansion is linear with
moisture content. Hahn rnd Kim assumed that material behavior is elasic and that swelling strains are
independent of te'nperature. Experiments did not quite agree with this model as some expansion
c ld be- ae:n b.lo.: t'he thveshold value (Cv) in Figure 31.

Adamsonl4 1 used the concept of free volume to explain the thermal expansion and swelling
of cured epoxy resins (see Review Part I, page 15). The free volume is the difference between the
measured volume and the occupied volume. The occupied volume consists of mass volume plus the
vibrational volume. In the first stage of moisture absorption only a fraction of absorbed water becomes

)und to the epoxy network and causes swelling. The rest of the absorbed moisture occupies the free
volume. The second stage of moisture absorption begins when the free volume i; completely filled
with water and all absorbed water becomes bound causing swelling. In this second stage, swelling is
equal to the volume of absorbed water. In the third stage of swelling observed by Adamson water
occupies free volume contained by micelles (highly cross-linked dense centers of generally less dense
resin) and swelling again is less than the volume of absorbed water. As the equilibrium between bound
and unbound water is inversely proportional to temperature (free volume changes wth temperature,
Fig. 33), swelling is aiso dependent on temperature. For a given amount of water in the sample,

swelling will increase with an increase in temperature. With changes in temperature, it is very difficult
to separate the effect of swelling from the pure thermal expansion in an experiment.

5.0 CONCLUSIONS (Chapter 3.0 and 4.0)

1) There is a lack of data on the transverse properties of fibers which in turn limits usefulness
of theoretical predictions of CTE of composites.

2) Accuracy of predictive techniques for CTE of laminae are improved when the dependence
on temperature of the fiber properties and even more so, the resin matrix are included in
the analysis.

0) CTE of laminates can be predicted if physical properties of unidirectional laminae are
known.

4) The hydrothermal history of the laminate may have an effect on its CTE, (i.e. thermal
cycling which results in the microcracking of the resin matrix).

5) Moisture in the specimen complicates the measurement of CTE and in general, wet speci-
mens Yequire longer time at temperature before any change in dimension is measured. Wet
composites bave different CTE than the dry ones.

6) Even very thin layers of coating (aluminium or other metal coating which serves as mois-
ture barrier) changes CTE of laminates significantly.

7) Swelling is significant in current polymeric composites It can be predicted with the same
expressions used for predicting the CTE. These predictions axe improved when the wet
properties of resins are used,

8) Resin swelling seems to be a three stage process that can be best explained with a free
voh.me concept.

6.0 RESIDUAL STRESSES

The thermal and moisture expansion properties of fibers and matrices are such that internal
stress states are present in composites under general conditions. These residual stresses may be respon-
sible for both defects and dimensional instabilities of cured composite materials before any external
load is applied.

4i: ~ -



6.1 Micromechanics

A T described in previc'is chapters, fibers and resins have greatly varying expansion coeffi-
cients. The cure temperature of reshis which are o. interest here, is typically between 1200C and
180*C. Immedirtely after crre and before cool down, the resin is in a leathery state and any stresses
created at this nvage will be relaxed almost instantly. During the cool down to room temperature, the
esin becomes more elastic and, owing to the mismatch of ey pansion coefficients and restraints pro-

vided by the fibers, an internel bress state will result. This type of stress was studied in model materials
made of thick glass filaments embedded in birefringent resins (epoxies typically are birefringent mate-
rials). Recently, Cunningham et &It 7 -I used this method mid obtained photoelastic data using a
polarizing microscope. The principal stresses were obtained with an oblique incidence method. A plot
of loop stress around the fiber is shown in Figure 34. The maximum loop stresses at the surface of the
fiber were calculated to be approximaely 100 MPa (tensile) while rr.dial stresses were only 6MPa
(compression).

Adams and Miller1 2 . 2181 conducted finite element inelastic analyses of hygrothermal
microatresses and their results generally agree well with Cunningham's photoelaatic investigation.
The magnitude of these microstresses was sufficient to cause yielding of the matrix. Hygrothermal
cycling was shown to change the state of residual microstresses with subsequent dimensional insta-
bility of laminae.

Menges and Gitschner 2 1 6 1 demonstrated yet another mechanism for the rise of residual
stresses in the transverse direction. In this direction, resin swelling is hardly restrained by the fibers,
yet stresses still build up. Fiber distribution may be homogeneous or inhomogeneos (see Fig. 35).
For both types of distributions zones of high and low fiber content may be identified and these will
have different swelling strains. As a result, local residual stresses are present, and as Menges and
Gitschner estimated, may lead to microcracking of the resin in a glass/resin composite.

6.2 Mactomechanics

Residual stresses have been observed in composite materials not only at the microscopic
level, but also at the macroscopic level in angle plied laminates or in unidirectional hybrids. These
stresses have been studied experimentally and analytically by numerous authors.

ChamisS 3 1 provides a good review of NASA Lewis Research Center activities and of NASA
sponsored research in this field. He pointed to four factors from which lamination residual stresses
(LRS) originate:

1) the differences in the ply CTE in the longitudinal (al I ) and in the transverse (a-2) direc-
tion. a 22 /Of 20 for fiber/resin laminae;

2) the difference in ply orientation angle (0) - there are no LRS in unidirectional laminates;

3) the difference between fabrication temperature and use temperature;

4) the ability of a ply to support stresses along its material axes.

Water is present in laminates under general usage conditions which implies, fronr, the results
of the previous chapter and from literature which will be reviewed below, that point one above should
be broadened to include the difference in moisture expansion, as well as CTE. However, general points
brought forward by Chamis are still true owing to the analogy between moisture and thermal effects.

The existence of LRS is evidenced by transply cracks and warpage of unsymmetric angle-
plied lamikiates before any mechanical load was applied to them. The transply cracks are observed
when LRS exceed the ply transverse strength (typically 28-63 MPh)l 3 1. Molcho and Ishail 9 1
obse,-ed these cracks in a graph.te/epoxy T300/5208 skin for a control surface. The original lay-up

I p.J awr_
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contained 0* and ±450 plies and after curing, not only transverse but also interlaminar cracks were
observed. The latter origiated from the tips of transverse cracks. It is worth noting that they found a
uniform di ;rl.bution of plies, as opposed to a lamped lay-up, to be preferable, as it resulted in less
severe cr -1s.

Strain gauges have beer employed in IRS measurements. Daniel, Liber and Chamisl 78 I
embedded strain gauges during fabrication of laminates. Results for 00 plies of baron/epoxy [02 /+45 ]
laminate ate shown in Figure 36.

Pagano and Hahn1 22 8 1 used a simplier method of LRS measurement. They bonded gauges
to lamninates at RT and then heated them to cure temperature.

The most common method of measuring LRS is through deformation measurements of
unymmetric laminates. Unsymmetric laminates warp due to the existence of LRS. This method is
however indirect as it is necessary to use lamination theory to obtain stress values corresponding to
the measured warpage.

Charnis in his review reported on use of linear elastic laminate theory for ply thermal
stresses (LRS caused by cure temperature being different then the use temperature). Effects of some
material variables were analyzed with the aid of this model, In Figure 37(c) the effect of the lamping
of plies in angle-plied laminate is shown and correlates well with the earlier mentioned findings of
Molcho and Ishai. The effect of fiber volume ply angle, and matrix modulus is shown in Figures 37(a),
(b) and 38.

Lee, Lewis and Sacherl 8 88, 1891 used [90*/00/9001 glass/epoxy systems to study the effect
of mr isture on their mechanical properties. First ply failure, in the tension test, results in a change
in slope of the stress-strain curve. Lee et al calied this the yield point. They observed that yield strain
was affected by residual strain (Fig. 39) and these in turn changed with the amount of moisture in the
composite. They measured residual stresses in symmetric laminate by the deply technique. When one
of the plies was removed, the laminate wareped and the stresses could be calculated.

Pagano and Hahn 2 2 8 ), Hahnl 191 and Hahn and Kiml 1 8 I developed a linear elastic model
to analyze curing stresses, however, they used a temperature dependent elastic moduli. Measurements
of warpage in unsymmetric angle plied laminates were compared with predictions. The stress free
temperature (T,) was observed to be below the curing temperature. For T300/5208 and Scotchply
1002 (glass/epoxy) it was 1210C as opposed to a cure temperature of 1770C. In transverse direction it
was found that the curing stresses may be more than 50% of UTS in this direction. For swelling, a
moisture threshold model was used and it was found that moisture obsorption may result in a stress
free laminate at room temperature (Fig. 40). Correlation of experimental data with calculated values
was not alwasys satisfactory.

The elastic model does not account for significant stress relaxation, especially near the Tg
of the resin. The lowering of the stress free temperature in a composite due to annealing, can readily
be explained on the basis of a viscoelastic model. Crossman, Warren and Pinolil 73 1 studied the rela-
tions between residual stresses and annealing time and temperature (see Fig. 41). For Shell 1031 resin
(1900C cure) the residual stresses at room temperature were lowered by 25% or - 7 MPa after 16 hours
at 1210C. Moisture, it was concluded, by plasticizing the resin, further accelerates residual stress
relaxation. Crossman and Flaggsl 74 1 0111 compared results of a linear viscoelastic analysis of dimen-
sional changes in laminates with experimental data and the results of elastic analysis. The correlation
between viscoelastic analysis and experimental data (warping) was very good. The elastic model failed
especially when used to analyze 1210C cure material (GY70/CE339). The viscoelastic model supported
earlier observations (i.e. Crossman, Mauri and Warrent 6 9 I) that the viscoelastic stress relaxation during
complete moisture absorption-desorption cycle at constant temperature can lead to unrecoverable
dimensional changes and result in different residual stress state. Thus accelerated conditioning programs
may result in a changed residual stress state. Crossman et all 6 9 1 found that hygrothermal cycling
increased residual stresses in a T300/5209 unsymmetric laminate. Similar laminates made from

300/5208 showed a 5-10% loss of residual stress under the same thermal history.

,*
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Hedrick and Whitesidel 12 e1 demonstrated that choosing an appropriate cooling rate for
gzaphite/epoxy laminates (based on 3501 epoxy), may also reduce the residual stresses through relaxa.
tion. Stress rlaxation was studied (Fig. 42) and different cooling rates from 1770 C to 1210 C were
investigated. In Table 4, a summary of photomicrographic examinations is given.

Haiper and Weitamanl 2 ! I and Dougims anjd Weisrna I9,. I postaihtd that if residual stress
relaxation is possible, than there should be an optimum cool down path fo' a laminate. They used a
linear viscoelastic model to find this pati,. Experimental confirmation of their finding has not been
very successful so far, as specimens used were relatively thick and contained many transverse cracks
which obscureed the results (an AS-3502 system was used). Further experiments in this optimal
time-temperature path are oontinuing.

6.3 Conclusions

1) The mismatch of thermal and moisture expansion of constituent materials or individual plies
in a laminate is responsible for build up of residual stress states. Residual stresses are usually
significant under normal usage conditions.

2) Residual stresses (or cure stresses) may cause transverse and interlaminar cracks in laminates
before any external load has been applied. These stresses may be reduced by taking advan-
tage of stress relaxation techniques.

3) Viscoelastic models seem to be better suited for studying residual stresses in composites.

4) When accele;.ited hygrothermal conditioning programs are used, care should be taken, as a
residual stress state may result which would not be found under normal service conditions.

TABLE 1

GLASS TEMPERATUREi 2 si

MS  HDT(°C) Tg(0 C)
Sample g/1OOg Penetration Dilatometry

5209 Dry 134 154
3.730 95 90

6-Ply Dry 109 131
1.236 90 109

12.Ply Dry 116 131
1.329 96 109
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TABLE 3

THERM kL CYCLYNG EFFE(CTS ON LONGITUDINAL c,rEI46 1

Fiber Longitudinal CTE, A in./in..0 F
Materil System Volume, % As-Cured Thermally Cycled

HMS/934, U/D 65.6 -0.45 -0.35
HMS/3501, U/D 65,2 -0.35 -0.38
HMS/934, O/D 65.1 -0.10 -0.30
HMS/3501, O/D 69.5 -0.13 -0.26
HMS/339, O/D 60.6 -0.10 -0.12
Hybrid

(HMS/3501 + T-300/934) 63.3 -0.13 -0.25

Note: U/D = unidirectional; O/D = oriented.

TABLE 4

SUMMARY OF PHOTOMICROGRAPHIC EXAMINATION OF Gr/Ep LAMINATES[ 1 2 8 1

Cooling Rate No. Specimens Total -Area* Total No. Max. Crack
(3500F to 250"F), Examined Exanined, of Cracks Length, in.

*F/min. in.2

5 to 6 3 3.24 47 0.012
2.5 2 1.89 3 0.005

1 9 7.21 0 -

* Microscopic examination of sectioned sine wave spars and travelers (300 X to 500 X)

wItlI
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